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INTRODUCTION

Problem Often data are not observed over the
whole sphere and are missing in some region.
Wavelets allow one to probe spatially localised, scale-
dependent features of signals on the sphere. How-
ever, the boundaries of the region of missing data
contaminate nearby wavelet coefficients.
Solution A possible approach to solve this prob-

lem is to construct wavelets within the region itself.

Figure 1: In cosmic microwave background analyses the
region around the Galactic plane is often removed [1].

SLEPIAN CONCENTRATION PROBLEM

R

Figure 2: Often data are ob-
served on a partial region
of the sphere only.

A function cannot be
strictly spacelimited
as well as strictly ban-
dlimited [2, 3]. The
Slepian functions Sp

are optimally concen-
trated within a region
R. To maximise the spa-
tial concentration of a
bandlimited function
f ∈ L2(S2) within a re-
gion R one must max-
imise the following ra-
tio:

µ =

∫
R

dΩ(ω) |f(ω)|2∫
S2

dΩ(ω) |f(ω)|2
, (1)

where 0 < µ < 1 is a measure of the spatial concen-
tration [4]. A bandlimited function f can be decom-
posed into this basis

f(ω) =
L2∑

p=1
fpSp(ω). (2)

WAVELETS CONSTRUCTION

Sifting Convolution The sifting convolution [5] (de-
veloped by the authors of this poster) can be ex-
tended to any arbitrary basis. The translation of an
arbitrary function f is

(Tω′f)(ω) =
∑

p

fpSp(ω′)Sp(ω). (3)

The sifting convolution between two functions f, g
is

(f } g)(ω) =
∫
S2

dΩ(ω′) (Tωf)(ω′)g∗(ω′), (4)

which is a product in Slepian space

(f } g)p = fpg∗
p . (5)

Slepian Wavelets Wavelet coefficients W Ψj

may
be defined by a sifting convolution of f with the
wavelet Ψj for wavelet scale j:

W Ψj

(ω) = (Ψj } f)(ω). (6)

Similarly, scaling coefficients W Φ are defined by a
convolution between f and the scaling function Φ:

W Φ(ω) = (Φ } f)(ω). (7)

The function f may be reconstructed from its
wavelet and scaling coefficients by

f(ω) = (Φ } W Φ)(ω) +
J∑

j=J0

(Ψj } W Ψj

)(ω). (8)
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Figure 3: The Slepian wavelets are constructed by a tiling
of the Slepian line.

NUMERICAL ILLUSTRATION

A region on the sphere is constructed from the Earth
Gravitational Model EGM2008 dataset [?].
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Figure 4: EGM2008
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Figure 5: R

The Slepian functions are less-well concentrated for
higher p.
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Figure 6: S1(ω), µ = 1.00
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Figure 7: S10(ω), µ = 1.00

The scaling function and first wavelet.
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Figure 8: Φ(ω)
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Figure 9: Ψ2j(ω)

The scaling coefficient and the first wavelet coeffi-
cient.
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Figure 10: W Φ(ω)
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Figure 11: W Ψ2j

(ω)

DENOISING EXAMPLE

Consider a signal localised in R in the presence of
noise

x(ω) = s(ω) + n(ω). (9)

Homogeneous, isotropic white noise is defined as

〈n`mn∗
`′m′〉 = σ2δ``′δmm′ , (10)

which defines the noise in Slepian space:

〈npn∗
p′〉 = σ2δpp′ . (11)

The denoised wavelet coefficients Dϕ(ω) = (ϕ }
d)(ω), where ϕ ∈ {Φ, Ψj}, become

Dϕ(ω) =
{

0, Xϕ(ω) < Nσσϕ(ω),
Xϕ(ω), Xϕ(ω) ≥ Nσσϕ(ω).

(12)

A clear boost in signal-to-noise is observed.
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Figure 12: Noisy data
SNR(x) = 4.11 dB
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Figure 13: Nσ = 2
SNR(d) = 5.67 dB

PROPERTIES

• In contrast to the spherical harmonic setting,
low and high p represent high and low concen-
tration respectively

• Wavelet energy ‖ϕ‖2 =
∑
p

|ϕp|2

• Wavelets satisfy a Parseval frame
• Wavelet variance depends on the position on

the sphere
[
∆W ϕ(ω)

]2 =
∑
p

σ2|ϕp|2|Sp(ω)|2
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