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INTRODUCTION

Often data are not observed over the
whole sphere and are missing in some region.
Wavelets allow one to probe spatially localised, scale-
dependent features of signals on the sphere. How-
ever, the boundaries of the region of missing data

ontaminate nearby wavelet coefficients.

- A possible approach to solve this prob-

lem is to construct wavelets within the region itself.
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Figure 1: In cosmic microwave background analyses the
region around the Galactic plane is often removed [1].

SLEPIAN CONCENTRATION PROBLEM

A function cannot be
strictly =~ spacelimited
as well as strictly ban-
dlimited [2, 3]. The
Slepian functions

are optimally concen-
trated within a region
R. To maximise the spa-
tial concentration of a
bandlimited function
f € L?(S?) within a re-
sgion R one must max-
imise the following ra-
tio;
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Figure 2: Often data are ob-
served on a partial region
of the sphere only.
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where 0 < p < 11s a measure of the spatial concen-
tration [4]. A bandlimited function f can be decom-
posed into this basis
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WAVELETS CONSTRUCTION NUMERICAL ILLUSTRATION

A region on the sphere is constructed from the Earth

The sifting convolution [5] (de-
Gravitational Model EGM2008 dataset [?].

veloped by the authors of this poster) can be ex-

tended to any arbitrary basis. The translation of an 42 et +1.9e4
arbitrary function f is P
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Figure 4: EGM2008 Figure 5: R

feg)(w)= [ dw) (Tuf (W),
Eé The Slepian functions are less-well concentrated fo
higher p.
which is a product in Slepian space
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Wavelet coefficients WY may o o
be detfined by a sifting convolution of f with the
wavelet W’ for wavelet scale j: _> St _{ Set
AR — (U @ f Figure 6: S1(w), p =1.00  Figure 7: Sio(w), p = 1.0

Similarly, scaling coefficients W are defined by a
convolution between f and the scaling function ®:

The scaling function and first wavelet.
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The function f may be reconstructed from its
wavelet and scaling coetficients by
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Figure 3: The Slepian wavelets are constructed by a tiling
of the Slepian line.
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DENOISING EXAMPLE

Consider a signal localised in R in the presence of
noise

— + n(w). (9)

Homogeneous, isotropic white noise is defined as

ngmnzm, — 0'25gg/5mm/, (10)
which defines the noise in Slepian space:
npynt) = o8, (11)
The denoised wavelet coefficients D¥ = (p ©
, where ¢ € {®, U/}, become

: X¥(w) < Nyo¥(w),
- i (12)

X¥?(w), X%w)> N,0%w).

A clear boost in signal-to-noise is observed.
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Figure 12: Noisy data
SNR(z) =4.11dB

Figure 13: N, = 2
SNR(d) = 5.67dB

PROPERTIES

In contrast to the spherical harmonic setting,
low and high p represent high and low concen-
tration respectively

Wavelet energy ||| [

Wavelets satisty a Parseval frame
Wavelet variance depends on the position on

the sphere |AW?¥ = > o?lp,|°|S
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